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This recitation will comprise assorted topics relevant to the lectures and psets.

I. PRINCIPLE OF MINIMAL INFORMATION: THE WALLIS DERIVATION

Recall that in lecture we derived a principle of minimal information to find the “least biased” distribution. We found a
quantity called the “surprise” of a sample that is additive for independent samples and is larger for more rare samples.
For a sample with probability p, we found that the surprise must be proportional to − ln p. The conclusion was that
the least-biased probability distribution pn over states n should minimize the average surprise:

S = −kB
∑
n

pn ln pn . (1)

There is another way to derive this principle, due to Graham Wallis and E. T. Jaynes, which I’ll go over here. Imagine
a group of N equally-sized buckets. Blindfolded, you throw W balls into these buckets. Each throw is independent of
the others. Overall, bucket i receives ni balls. You use this to construct an empirical probability distribution, letting
pi ≡ ni/W be the probability of box i.

However, suppose you are only interested in probability distributions that satisfy some constraint. For example, if
the buckets have different “energies”, suppose you only care about probability distributions whose average energy
⟨E⟩ =

∑
i piEi is within some interval [E,E +∆E]. To enforce a constraint, after you do your sampling, you throw

away the empirical probability distribution if it doesn’t satisfy the constraint. You keep sampling, and throwing out
inadmissible samples, until you have many samples, yielding many independent empirical probability distributions
that all satisfy the constraint.

Note that there are multiple ways to generate the same probability distribution {pi}, or occupancies {ni}: the balls
could land in the same boxes but in a different order. The number of different ways to generate a sample is given by
its degeneracy Ω, which is given by the multinomial coefficient:

Ω[{pi}] =
W !

n1!n2! . . . nN !
=

W !

(p1W )!(p2W )! . . . (pNW )!
. (2)
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II LAGRANGE MULTIPLIERS

We can now make the crucial observation that samples with higher degeneracy are more likely to be observed: the
most probable probability distribution is the one that maximizes Ω. Another way to maximize Ω is to maximize the
quantity

S[{pi}] ≡
1

W
lnΩ[{pi}] =

1

W
ln

(
W !

(p1W )!(p2W )! . . . (pNW )!

)
=

1

W

(
lnW !−

N∑
i=1

ln(piW )!

)
. (3)

To generate an accurate probability distribution, you need to make very large samples, so W → ∞. But in this limit,
S can be simplified using Stirling’s approximation:

Lemma I.1: Stirling’s approximation

The logarithm of the factorial can be approximated as

lnW ! = W lnW −W +O(lnW ) . (4)

Using this approximation, we find

S[{pi}] ≈
1

W

(
W lnW −W −

N∑
i=1

[
piW ln(piW )− piW

])
= lnW − 1−

N∑
i=1

[
pi ln(piW )− pi

]
(5)

= lnW − 1−
N∑
i=1

[
pi ln pi

]
−

N∑
i=1

[
pi

]
lnW −

N∑
i=1

[
− pi

]
= lnW − 1−

N∑
i=1

[
pi ln pi

]
− lnW + 1 (6)

= −
N∑
i=1

pi ln pi . (7)

This is simply the Shannon entropy of the system. Thus, because we are most likely to observe the highest-degeneracy
probability distribution, and because the highest-degeneracy probability distribution also has the highest entropy, we
are most likely to observe the maximum-entropy probability distribution. Of course, all of this is restricting to the
set of distributions that satisfy the constraint.

II. LAGRANGE MULTIPLIERS

A. One constraing

How do we maximize a multidimensional function while satisfying a constraint? We use the method of Lagrange
multipliers.

Consider a toy example in 2d. We would like to maximize the function L(x, y) with respect to the variables x and y,
but we are forced to adhere to some constraint; for instance, f(x, y) must equal zero for some f . In other words, we
have to find the point along the line f(x, y) = 0 such that L(x, y) is maximum.

At the maximum of L along the constraint, the constraint curve must be parallel to the contour line of L. But the
constraint curve is simply a contour line of f . In other words, the gradient of the constraint function f must be
parallel to the gradient of L. This is illustrated in the following figure:
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III FUNCTIONAL DERIVATIVES

If the gradients of L and f are parallel, then we can write ∇L(x, y) = λ∇f(x, y) for some scalar λ. This justifies
defining a new lagrangian

L(x, y, λ) ≡ L(x, y)− λf(x, y) (8)

and maximizing it with respect to x, y, and λ. We see that, indeed,

∇x,yL = 0 =⇒ ∇x,yL = λ∇x,yf (9)

∂L
∂λ

= 0 =⇒ f(x, y) = 0 . (10)

B. Multiple constraints

What if there are multipe constraints? As an example, consider the problem of maximizing a higher-dimensional
function L(x⃗) with respect to x⃗ while also requiring that f1(x⃗) = 0 and f1(x⃗) = 0. We would define the new function

L(x⃗;λ1, λ2) ≡ L(x⃗)− λ1f1(x⃗)− λ2f2(x⃗) . (11)

Then, extremizing L with respect to x⃗, λ1, and λ2 results in all constraints being satisfied, along with

∇L = λ1∇f1 + λ2∇f2 . (12)

Or, the gradient of L is a linear combination of the gradients of f1 and f2. The vector space spanned by the gradients
of the constraints is, locally, the “forbidden” space in which the constraints prevent us from moving. Thus, if ∇L
lives in this space, the “allowed” space is perpendicular to ∇L. In other words, if we move along the constraint, L
doesn’t change, and thus at this point it is extremized.

III. FUNCTIONAL DERIVATIVES

We have considered optimization problems of finite or countable dimension, e.g. the N -dimensional problem of

maximizing S[{pi}] = −
∑N

i=1 pi ln pi with respect to each pi. But what if the dimension of the space is infinite and
uncountable; for instance, how do we maximize something over the space of real functions?
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For this, we use the functional calculus, a functional generalization of vector calculus. In functional calculus, functions
are replaced with functionals, the variables are replaced with functions, and indices are replaced with variables. The
analogy between vector calculus and functional calculus is summarized in the following table:

Vector calculus Functional calculus

function f(x⃗) functional F
[
f(x⃗)

]
variable x⃗ function f(x⃗)

index i variable x⃗

partial derivative ∂f/∂xi functional derivative δF/δf(x⃗)

As with the partial derivative in vector calculus, the functional derivative is constructed by considering the variation
of a functional when only one “coordinate” is varied; i.e. we vary f at only one position x. For a functional F [f ], we
define

δF
[
f(y⃗)

]
δf(x⃗)

≡ lim
ε→0

F
[
f(y⃗) + εδ(y⃗ − x⃗)

]
−F

[
f(y⃗)

]
ε

. (13)

(This isn’t always well-defined because of the pathological properties of the delta function, and in math a different
construction using test functions is used. However, for our purposes, this will always work.)

We can derive some important relations using the definition (13). For example, if the functional can be written as
the integral of a function L(x, f, f ′), i.e. as

F [f(x)] =

∫
dxL

(
x, f(x), f ′(x)

)
, (14)

then we can calculate

δF [f(y)]

δf(x)
= lim

ε→0

1

ε

[ ∫
dy

(
L
(
y, f(y) + εδ(y − x), f ′(y) + εδ′(y − x)

)
− L

(
y, f(y), f ′(y)

))]
(15)

= lim
ε→0

1

ε

[ ∫
dy

(
L(y, f(y), f ′(y)) + ε

∂L

∂f
(y)δ(y − x) + ε

∂L

∂f ′ (y)δ
′(y − x) +O(ε2)− L(y, f(y), f ′(y))

)]
(16)

=

∫
dy

[
δ(y − x)

∂L

∂f
(y) + δ′(y − x)

∂L

∂f ′ (y)

]
(17)

=

∫
dy

[
δ(y − x)

∂L

∂f
(y)− δ(y − x)

∂

∂y

(
∂L

∂f ′ (y)

)]
(18)

=
∂L

∂f
(x)− ∂

∂x

(
∂L

∂f ′ (x)

)
. (19)

This leads us to the Euler-Lagrange equation of classical mechanics. (The chain rule given as a hint in the pset follows
from this.)

We can also take the functional derivative of a function f with respect to itself. Making f look more like a functional
by writing

f(y) =

∫
dzf(z)δ(y − z) , (20)

we can use Eq. (19) with L(x, f(x)) = f(x)δ(y − x) (forgetting that y is a variable) to find

δf(y)

δf(x)
=

∂L

∂f
(x) = δ(y − x) . (21)

IV. LIOUVILLE’S THEOREM

We will now prove Liouville’s theorem, first for single-particle dynamics then multi-particle dynamics, only in 1d.
(The generalization to 3d will follow straightforwardly.)
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IV LIOUVILLE’S THEOREM

A. Single-particle

First consider a single particle moving in 1-dimensional space with coordinate q, momentum p, and Hamiltonian
H(q, p). Suppose it starts at an initial phase space coordinates (q, p), and consider its evolution over a small interval
of time ∆t.

Hamilton’s equations of motion dictate that the phase space coordinates evolve as

q → q′ = q + q̇∆t+O(∆t2) = q +
∂H

∂p
∆t+O(∆t2) (22)

p → q′ = p+ ṗ∆t+O(∆t2) = p− ∂H

∂q
∆t+O(∆t2) . (23)

Now consider a small volume of phase space, dΓ = [q, q+ dq]× [p, p+ dp], located at (q, p). Its volume is |dΓ| = dqdp.
Under the Hamiltonian evolution, it moves to a new volume dΓ′. It may shift, rotate, and stretch. But does its
volume change?

The volume of the dΓ′ can be related to |dΓ| using the Jacobian determinant of the infinitesimal transformation (22)-
(23). That is,

|dΓ′| = (detJ )|dΓ| , where J =

∂q′/∂q ∂q′/∂p

∂p′/∂q ∂p′/∂p

 . (24)

See the following schematic:

The Jacobian matrix is found using the infinitesimal transformation (22)-(23) to be

detJ = det

1 + ∆t∂2H/∂p∂q ∆t∂2H/∂p2

−∆t∂2H/∂q2 1−∆t∂2H/∂q∂p

 = 1 +O(∆t2) =⇒ |dΓ′| = |dΓ|. (25)

Thus the volume of dΓ is unchanged as it evolves under the Hamiltonian dynamics. This evolution is visualized in
the following figure:

5



IV LIOUVILLE’S THEOREM

1. Evolution of the probability density

One consequence of this is the conservation of probability density along a trajectory. Consider an ensemble of
independently-evolving single particle systems. Suppose the probability density of configurations in the ensemble is
given by ρ(q, p; t). (This is a probability density over the coordinates (q, p), parametrized by the time t. At each time
t, there is a new probability density ρ(q, p; t).) So at time t, there is a probability ∼ ρ(q, p; t)dqdp of being in the box
[q, q + dq]× [p, p+ dp].

Think from the perspective of a single particle. In a small neighborhood of configuration space near you, how many
other particles from the ensemble do you expect there to be? This is proportional to ∼ ρ(q, p; t)dqdp. What about at
time t + ∆t? You move to q′ = q + q̇∆t and p′ = p + ṗ∆t. The neighborhood around you also shifts by the same
amount, and deforms according to the Jacobian matrix J given in Eq. (24). Thus the number of neighbors transforms
like

# Neighbors ∝ ρ(q, p; t)|dΓ| (26)

−−→
∆t

ρ(q + q̇∆t, p+ ṗ∆t; t+∆t)|dΓ′| (27)

=

[
ρ(q, p; t) + ∆tq̇

∂ρ

∂q
+∆tṗ

∂ρ

∂p
+∆t

∂ρ

∂t

]
|dΓ| (28)

=

[
ρ(q, p; t) + ∆t

(
∂ρ

∂q

∂H

∂p
− ∂ρ

∂p

∂H

∂q
+

∂ρ

∂t

)]
|dΓ| (29)

=
[
ρ(q, p; t) + {ρ,H}+ ∂tρ

]
|dΓ| (30)

= ρ(q, p; t)|dΓ| . (31)

You have the same number of neighbors as before. Thus, the probability density is constant along a trajectory.

B. Multi-particle

Now generalize to the N -particle, 1-dimensional case. Start at initial phase space coordinates (q1, . . . , qN , p1, . . . , pN ),
with a small 2N -dimensional box dΓ of volume |dΓ| = dq1 . . . dpN . Under an infinitesimal step of the Hamiltonian
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dynamics, the box becomes dΓ′ with volume related to |dΓ| by the relation

|dΓ′| = detJ |dΓ| , where J = 12N +∆t



∂2H
∂p1∂q1

∂2H
∂p1q2

. . . ∂2H
∂p1∂pN

∂2H
∂p2q1

∂2H
∂p2∂q2

. . . ∂2H
∂p2∂pN

. . .

...
... − ∂2H

∂q1∂p1

. . .

− ∂2H
∂qN∂q1

− ∂2H
∂qN∂q2

− ∂2H
∂qN∂pN


≡ 12N +∆t(δJ ) .

(32)

To calculate this, we can use the matrix identity:

det
(
e∆t(δJ )

)
= etr (∆t(δJ )) (33)

=⇒ det(12N +∆t(δJ )) +O(∆t2) = 1 +∆t tr (δJ ) +O(∆t2) = 1 +∆t

N∑
i=1

∂2H

∂pi∂qi
−∆t

N∑
i=1

∂2H

∂qi∂pi
= 1 . (34)

Thus the phase-space volume is conserved in the multi-particle case, as well. The generalization to higher dimensions
(e.g. the 6N -dimensional phase space of 3-dimensional, N -particle dynamics) is straightforward.

C. When it fails

Liouville’s theorem isn’t always true, e.g. for dissipative dynamics. For example, consider a damped harmonic
oscillator with friction γ:

q̇ = p/m (35)

ṗ = −kq − γp . (36)

The Jacobian for the phase space volume change is then

J = 1+∆t

 0 1/m

−q −γ

 =⇒ detJ = 1−∆tγ +O(∆t2) . (37)

This, phase space volume shrinks at a rate of d|dΓ|/dt = −γ|dΓ|, causing the probability density to exponentially
localize to (q, p) = (0, 0).
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